Tuesday, October 29, 2019

Excitement About High Entropy Alloys

Currently materials research has slowed down, unless you are into advanced manufacturing. Today almost all technology is focused on computers and mechanical devices, such as robots. In our opinion, this is a dangerous way to proceed. Already kids are begining to have difficulty in writing and spelling, and are more confused than ever by the new math being introduced. This is the beginning; what is going to happen when most of the nation becomes hooked on this new technology that takes the human factor from the big picture?
However, materials research is still needed for improvement in light car performance, solonoids, magnetic applications, deep sea technology, space and  nuclear energy. All of these applications require either improved alloys or new alloys to permit these future applications to evolve.
One of the new systems for improvement of special alloys is entitlled high entropy alloys. Actually development began way back in the 1980s with the superaalloys. At this time alloys existed for high temperature applications, but did not quite serve the application completely. However, if a slight amount of another element was added, or even an additional element in greater quantity, then the properties for the application were satisfied and life moved on.

In reality , however, there is no real definition of what a high entropy alloy is. Actually it is an alloy that is either modified or completely invented for specific applications, such as those new technologies mentioned above as being currently in progress at some scale of development. MagnaTech has been interested in improved magnetic alloys to provide improved power for electric cars. We are also active in development of heavy alloy materials. In this case, cobalt is a problem because it is largely produced in a potentially hostile country and also, although not classified, it is being considered as a carcenogenic. The Army was so concerned that it was working on research in that area. With the advent of the new laser technology for weaponry, the need for replacement has now abated. However, MagnaTech is starting a program to develop a binder for tungsten carbide that will eliminate the use of cobalt that is traditionally used as a binder.  MagnaTech always welcomes financial support for these projects being developed to improve applications for new designs for new technology.

Saturday, June 1, 2019

Get Ready for Electric Cars

Ho, hum, Gas is still relatively cheap, but the population is growing that constantly shortens the finite supply of petroleum.On the contrary, electricity is expensive and the grid is already overloaded. Therefore why electric cars. The big problems are that supply is finite and also adds to the contamination of our atmosphere.
So, why not electric cars? Well there are still problems that require resolution. First, we are used to driving in to a gas station and saying fill er up.In less than fifteen minutes we are again on our way. Gas stations are located at almost every major intersection and therefore easy to stop and fill up.
If the country switches to electric cars, except in California, the stations available are not easily found. Therefore one frets a little bit longer when the gauge is reading close to empty. However, we well know as the need increases, there will be more and more stations available.
All well and good, not a big problem. However, consider that fifteen minutes to fill up and get underway. With the electric car, under current conditions, to achieve an additional distance of say, 300 miles, the electric car requires an hour to recharge. Ouch, that is not what the public wants.
The other factor the public expects is performance. That means that a battery needs to supply the proper energy to start the car, get it up to speed in a short period of time and maintain driving conditions until it is time to cease operation.
These conditions are obtained by a battery that supplies a motor with a proper supply of volts required to provide power to accomplish supply a transmission system to do the job. Currently the battery is the point of concern. Concerns include sealants, thermal insulation,conductivity , noise, vibration, shock, flame retardation barriers, tape resistant to hot, cold and cyclic temperature.These sound like insurmountable problems; and only time will tell whether sufficient advancements can be made.
However, the battery drives a motor which in turn controls transmission to the axles. These too affect the ability of the battery to perform and maintain sufficient life for efficient operation.Weight loss or more efficient performance by these components support the battery performance. MagnaTech is directing its energy to development of rotor component of the P/M motor that transmits energy to the transmission. If more power becomes available through added power supply to the transmission, then the battery can become more efficient, providing improved mileage before requiring a recharge. In addition, if the resistivity of the rotor segments can be improved, the car performance also is improved. If  the resistivity can be increased, power is also further increased and also temperature reduction is possible .MagnaTech is working on a new alloy that we expect will improve the properties stated above and thereby extend both life and performance of batteries. Furthermore, if successful, the development could result in decrease in motor weight, also improving battery performance. MagnaTech is seeking funding and partnership for commercialization of this improvement in performance of these P/M motors.

Tuesday, February 19, 2019

Update on the Staus of the Cemented Tungsten Carbide Market

Currently the market for cemented tungsten carbide is $27.5 trillion. Most of the cemented tungsten carbide market today uses a percentage of cobalt to permit the fine tungsten carbide particles to bind together when consolidated.Generally the amount of cobalt admixed is less than 10% of the tungsten carbide weight. Unfortunately cobalt is becoming a problem for many reasons.
The major reason is emerging competition from the battery and the automotive markets.The use of cobalt for these applications for components is increasing at a rapid rate.Currently it is estimated that 49 percent of the cobalt produced will be targeted toward this market.
Supply today mostly comes from the Republic of Congo, in Africa.The problem now becomes that we are dealing with an unstable government that uses children to mine the cobalt.without protective equipment. In addition, the EPA has declared cobalt to be carcinogenic. These problems have led to a deficit of cobalt for this year to be 3,205 tonnes, increasing to 5,340 tonnes by next year.As a result, the price of cobalt , in the past eighteen months, has increased from $10 per pound to $27.78 per pound.
The Army, facing these conditions regarding armaments, has developed a new patented binder system that is based on iron, thereby eliminating the use of cobalt from their applications. MagnaTech too has a concept for a new binder system, based on iron as the base, but using a different concept. We are seeking a partner to develop this system. If you are affiliated with the cemented carbide market, you are faced with the same problem. If interested in our system please contact us and we will be delighted to discuss our concept further.

Sunday, December 9, 2018

Fusion Nuclear Reactors

Many designs for clean nuclear energy are being considered for commercial application One such system is classified as a fusion reactor.Unfortunately, like all proposed new reactor designs, this reactor will operate in a hostile envirenment, which includes stress at high temperatures, corrosive salt bathsand neutron irradiation.In addition, the life of a nuclear reactor should exceed 50 years with scheduled maintenance and replacement of materials
Under these harsh conditions materials  to resist structural damage under conditions never experienced before require development . Yes, materials are available for high temperature applications, such as jet engines and these materials opperate in a hostile corrosive atmosphere as well. They are available and do the job well.
How about these reactors then. What makes material selection so much more critical for their design and function? Well, first they will opperate at temeratures ranging from 500 C to 1000 C. No problem. Now throw in the condition that the structural component require function in some kind of a salt envirenment. Now we are approaching some difficult selections, however, still possible. Now add the fact that irradiation occurs and you really have a large problem to resolve. What is the material that can sustain all of these factors? Unfortunately, under current technology this selection is not trivial and requires more careful study.
Well, what happens if you change the surface of these materials by application of a coating of some sort that is more corrosive resistant. Posssible to resist corrosion in salt solutions.; but how about the factor of irradiation? Now we are into the nitty gritty of the problem. First, studies of resistance to radiation are difficult to come by. Secondly, not only can there be more extensive surface damage owing to corrosion and defects in the material structture, but also there may be deterioration of the structural properties, owing to the applied opperating conditions.
For these reasons, MagnaTech is interested in the development of surface coatings capable of sustaining these operating conditions. MagnaTech is working on surface modification that could possibly reduce the damaqge from salt and radiation causing degradation of the surface. Steels are being developed and these steels are becoming available.Whether these steels will be capable of resisting structural degradation is also unknown, althoug more clearly defined. MagnaTech would like to present our concepts to companies that are interested in commercialization of the concepts, should they present a solution to the problem. Please contact us, should you too have interest in this area of opportunity.

Wednesday, October 17, 2018

Magna Tech Submits Department of Energy Proposal

MagnaTech has been interested in the development of Generation IV type nuclear reactors for three years. Last year MagnaTech submitted a proposal to Department of Energy and it was rejected because MagnaTech had no way to determine the effect of radiation on the surface protection of the alloy they intended to protect.
One serious problem that is holding up installation of these type reactors is finding an alloy that can withstand the severe operating conditions of a Generation IV nuclear reactor. Not only is strength and ductility required for structural purposes, but also corrosion of the surface must be contained to resist the environment in which the nuclear reactor operates. In this case the operating environment is
500 C in lead-bismuth reactor coolant.
MagnaTech has developed a coating that uses a large concentration of atomic carbon and/or nitrogen deposited on the surface, which reacts with the alloying elements contained within the selected alloy to form stable, protective intermetallic compounds.Unfortunately the usefullness of this coating still requires proof of corrosion resistance under the operating conditions of the nuclear reactor.  This year, MagnaTech is submitting a similar proposal but in cooperation with a non-profit laboratory. .In joining with the non-profit laboratory, MagnaTech gains the capability of ir radiating the coating to determine the effectof radiation on deterioration of the protective coating and the effect of radiation on the performance of the structural alloy selected. In conjunction with this capability, MagnaTech will independantly determine the corrosion of the coated surface by a lead-bismuth salt at the operating conditions of the nuclear reator at 500 C in this salt solution. Once the basic information is attained,  the intent is to combine the irradiation study with the sat corrosion tests to demonstrate the effectiveness of the coating under the operating conditions for this particular Generation IV reactor type.
Should our coating provide the answer to resist corrosion and radiation damage without major change in the structural properties of the alloy selected,  a major solution is provided to advance the installaltion of these important new reactors. Stationary nuclear reactors in existance today are at the end of their life cycle, and some even exceed it. The new reactors would have the capability of being placed on a flatbed truck and transported to any site of interest. In this case it may be a swampy polluted water body to convert waste water to either hydrogen fuel and/or  good fresh water. In addition, the reactor could be transported to vegitation where the waste could be converted to hydrogen for fuel. Even small localities and factories could benefit through having on site inexpensive elecctricity generared. If used in tandem, then major cities could benefit through the production of electricity. Even the environment gains, because the reactor does not cause poluttants to be released to the atmosphere. In addition, it is safe, being incapable of going critical upon disabling incidents and the nuclear fuel can be replenished without depletion or disturbane of ore bodies.

Saturday, September 1, 2018

A Generation IV Nuclear Reactor

Our current nuclear reactors are 50 years old and face retirement or expensive outlays to extend their lives. Moreover, they also have the capability of going critical, emitting radiation to the population and atmosphere if damaged or sabotaged. Since nuclear energy is the cleanest and represents about all electrical power produced, we have a cuirent problem..
There are many reactor concepts and these are classified as Generation IV nuclear reactors. However, all have serious problems,  delaying their construction. Estimation, at present, is that these reactors will not be on stream until the 2020s. Yet if these problems are resolved, there are many benefits. The reactors are light weight and meant to be transportable on flat beds to remote places such as bogs or other areas contaminated with organic waste  preventing public usage or usage for water or carbonaceous recovery or  as power plants to satisfy electrical requirments of small cities or factories.These reactors are cooled by liquid salts and can operate at temperatures ranging from 500 to 1000 C. Therein lies the problem because the molten salt is corrosive, especially when creating radioactive energy; and corrosion increases as the temperature increases.However. the higher the temperature the greater the efficiency, translating to lower cost, rendering the electreicity produced from the nuclear energy .competitive with traditional carbonaceous fuels.
One of the problems that require resolution before the reactors enter service is materials. Traditionally these have been steels. However as the temperature increases, accompanied with corrosion from radiation produxcts and temperature, newer more corrosion resistant steel are required.If operated at 1000C, the material selection becomes more difficult, because of the active molten salt and the radiation products created under the operating conditions.
One of the reactors considered was used to power submarines by the Soviet Union in the late 1990s. it was a reactor that used a lead-bismuth salt for cooling the nuclear fuel contained within the bed. This reactor has the advantage of operating at 500C, the low end of the reactor types competing to serve the market.  however the efficiency is not touted to be as good , rendering it more difficult to compete with traditional fuels.However, the material problem is more managable.because of the lower operating temperature. However corrosion still remains as the problem because of the activated corrosive salt serving as coolant. Therefore what is needed is something rto prevent the coolant from corroding the surface of the material of choice. There are many materials that can serve as coatings for corrosive protection.. These are generally sprayed onto the surface. Unfortunately at the surface an interface occurs because of the diffence between the coating deposited and the base alloy. This results because the alloys used for coating are brittle or may contain pores or debris that can result in crack formation rendering the coating to provide a path to the alloy.thereby not protecting it from corrosion. magnaTech has an idea which uses an activated atomic deposit on the surface to react with alloying elements within the steel to form stable intermetallic compounds that do not corrode and furthermore forming no interface that is brittle or defective but blends dirrectly to the traditional microstructure of the steel. If you have a severe corrosion occuring in your application, MagnaTech may have the solution improving performamce and ilowering cost and reducing contamination of the atmosphere.

Monday, July 9, 2018

A New Kind of Fuel

Today gasoline prices continue to increase.   There are threats to future supply, and the exhaust emitted is a danger to the environment. However, there are alternatives to the increasing price and diminishing reserves availabe. The problem is that the alternatives  are more expensive.
One alternative that may be becoming competitive is hydrogen.It is not harmful to the environment, but helpful, and replenishable since the exhaust enters the atmosphere as water. Problems exist that delay consideration of this resource. These include: educating the public that hydogen is not a bomb, any different fromgasoline, safe transprt from source to destination without danger to the community, and modifying the structures of gas stations.
However, these problems are being explored and changes appear to be possible at reasonable cost. If accomplished, then it may be possible to produce hydrogen abundantly, even in homes or as major refineries. Methods are available for safe transport through populated areas without major catastrophy resulting, and  modification can be made to gas stations for storage of supplies and transfer to vehicles as fuel.
One way to accomplish this is throught utilizing the energy of the sun and a water supply. Both of these components are available as solar production at homes and from farms that produce hydrogen en-mass for community usage. The problems  to be resolved are again  storage and safe transportation. Ideas are beginning to be developed to resolve these problems that are interesting to  the gas and petroleum manufacturers.
One of the problems is, if solar energy can be used to produce hydrogen from the sun's energy and available water supply, how do you store this hydrogen supply, either as a resource for home usage or within commercial storage for volume exploitation? One possibility is through use of a fuel cell, using the sun and water as the method and then have a cell for conversion of the water produced to hydrogen. It becomes a closed loop providing aditional advantage for the use of solar power.
The problem now becomes the separation of the hydrogen from the water being produced. This now is possible through inclusion of a fuel cell that accepts the heated water produced from the solar resource, using a photoelectrochemicalcell. In this case the heat produced is either condensed as water or can be energized to provide power. Eventually the water , being converted to steam, cools and can be used as pure water. However, not all the heat required to make electrical energy is expended and the water used can be further useful before storage for consumption to separare hydrogen and then either recycled or stored for consumption. To do this a photoelectrical cell is required for separation of the hydrogen from the water and return the oxygen ions produced back as water.
However, there are still problems in balancing the hydrogten produced and restoration of the oxygen ions from the cell.
 In this case a catylist is required . The trick is to develop the catalyst to permit hydrogen to pass through while restraining the oxygen ions produced from the separation to be restored to the water or exhausted to the atmosphere.
Currently there is research on a membrane attached to the anode of the fuel cell to return the oxygen ions back to the water.Current interest is in a series of alloys known as perovskyte to accomplish this task. The alloys are produced from fine metal oxide powders to produce the membrane. They work but the reasons are not completely understood because they are based on atomic arrangement of the atoms. Current membranes work, but the efficiencies are not sufficient for economic production. New instruments are currently being developed to permit understanding of  atomic arrangment of atoms and the position of the elements contained within the atomic cell, Currently the size and position of the anions are being explored. One therory is that if the anions were smaller they could improve the energy potential. There are two thoughts under consideration. One that we favor is to use either a fine alloy or oxide powder and use a redox balance to create a liquid. The liquid is then converted as the membrane  on the anode, providing either a fine or an amrpous atomic structure, thereby improving the energy efficiency. MagnaTech believes that a modificatiion of a process that we have promoted to make magnetic ink will provide the proper microstructure and atomic spacing.
Currently developments in cryogenics can make storage and transport possible. If the hydrogen produced can be stored and transported as a solid to a refinery or to gas stations,  this problem is solved and there will be no problem transporting hydrogen through urban areas for delivery to gas, oops, hydrogen stations.If so we would have clean competitive energy to serve as fuel for our transportation. MagnaTech is investigating  ways to provide the membrane to make conversion of solar energy possible. However, it is in the infant stage of development and in need of financing.