Thursday, March 15, 2018

Energy-Fossil Fuel Top Dog

Lets face it: we have relied on fossil fuel for energy almost since man discovered fire. However, there weren't as many people around and life expectancy was much shorter. Therefore fossil fuel was a comfort, no--a must for keeping warm and for cooking.
Today there are considerably more of us and not only that, we are living longer. Not only is heat involved, but now there is a constant demand for more and more energy for an increasing number of electronic products and gadgetry. In addition, our nuclear reactors, the cleanest energy source, are aging and the cost for extending life or replacement is high. Less costly reactors are not expected to reach the commercial stage until the 2020s. Solar and wind have their problems regarding location and energy storage. Hydrogen still has safety obstacles to overcome to become a commercial fuel. Therefore, not only because of cost, but additional problems regarding alternative energy sources, it is reality that fossil fuels will be our major energy resource, at least for the short term. The problem becomes one of the emissions. Released to the atmosphere from combustion of coke they cause major damage to the ozone layer. These contaminants to the atmosphere are largely nitrogen compounds identified as NOx and sulphur compounds identified as SOx. In addition, mercury and other heavy metals, health hazards to humans, are also emitted. The Environmental Protection Agency is therefore concerned and is in process of controlling the quantity exhausted to the atmosphere.
Traditional methods for reduction include: wet scrubbing with alkaline sorbent, spray dry scrubbing with similar sorbents, sulfuric acid, flue gas desulfurization and dry sorbent injection systems. These systems are well-known and capital costs well understood. More advanced untried processes include: selective catalytic reduction with methane, plasma decomposition and electrochemical decomposition.
MagnaTech believes that we can develop a process using fluid bed technology to catalyze and reduce these harmful contaminants from combustion exhaust gas to nitrogen. The process receives the combustion exhaust gas at 5000C in an activated fluid bed. The exhaust gas will pass through the activated bed, and a partial pressure of a reducing hydrocarbon gas will be intermixed to reduce NOx to nitrogen and SOx and other contaminants to the fluid bath. MagnaTech is currently seeking support to determine the reliability and the cost required to successfully introduce the process to industrial application. We have assembled a team consisting of Mr. Moyer, chemical catalytic experts, and a fluid bed manufacturer that is key to introducing the process to the commercial market place. The group is open to discussion regarding the technology.

Saturday, February 17, 2018

Flexible Hybrid Electronics

Within the next ten years a $70 billion market will develop for hybrid flexible electronic devices and antennas.Currently this market is in infancy because expensive silver serves as the conductive ink and the methods for application are too expensive.
The question then becomes, why not copper? After all, look around you and every electronic device uses copper for efficient flow of electricity for efficient operation.The problem is when you deposit a conductive ink with features of less than 50 micro inches, the conductivity is too low for efficient operation. So far, from what we see the problem is unresolved and if it can be, then this market will blossom.If an improved conductive copper ink could become available,  applications for sensors biosensors, touch screens, antennas, printed heaters, potentiometers and printed circuit boards, solar panels and electroluminescent panels become viable.
The probem is how do you improve the conductivity of copper in such a fine feature when the surface is maximized? MagnaTech thinks outside the box and has conceived an idea that could economically improve the conductivity of copper in thin deposits  to replace expensive silver and processing required for application. However, MagnaTech is a materials research company and  not an expert in ink formulation and application. Therefore, MagnaTech intends to team with a company that does manufacture conductive inks, and with an additional consultant who has been there and made many of the mistakes that have prevented application. The team has prepared a proposal describing how we expect to resolve the problem to permit advancement to the pilot stage of development. We believe that the concept that we propose will improve the conductivity at low cost could be available in six to nine months. So far the largest eleven strongest participants have not succeeded. MagnaTech and partners, look forward to participating  to develop this conductive ink that would significantly expand the usage for these advanced flexible devices.