Monday, July 9, 2018

A New Kind of Fuel

Today gasoline prices continue to increase.   There are threats to future supply, and the exhaust emitted is a danger to the environment. However, there are alternatives to the increasing price and diminishing reserves availabe. The problem is that the alternatives  are more expensive.
One alternative that may be becoming competitive is hydrogen.It is not harmful to the environment, but helpful, and replenishable since the exhaust enters the atmosphere as water. Problems exist that delay consideration of this resource. These include: educating the public that hydogen is not a bomb, any different fromgasoline, safe transprt from source to destination without danger to the community, and modifying the structures of gas stations.
However, these problems are being explored and changes appear to be possible at reasonable cost. If accomplished, then it may be possible to produce hydrogen abundantly, even in homes or as major refineries. Methods are available for safe transport through populated areas without major catastrophy resulting, and  modification can be made to gas stations for storage of supplies and transfer to vehicles as fuel.
One way to accomplish this is throught utilizing the energy of the sun and a water supply. Both of these components are available as solar production at homes and from farms that produce hydrogen en-mass for community usage. The problems  to be resolved are again  storage and safe transportation. Ideas are beginning to be developed to resolve these problems that are interesting to  the gas and petroleum manufacturers.
One of the problems is, if solar energy can be used to produce hydrogen from the sun's energy and available water supply, how do you store this hydrogen supply, either as a resource for home usage or within commercial storage for volume exploitation? One possibility is through use of a fuel cell, using the sun and water as the method and then have a cell for conversion of the water produced to hydrogen. It becomes a closed loop providing aditional advantage for the use of solar power.
The problem now becomes the separation of the hydrogen from the water being produced. This now is possible through inclusion of a fuel cell that accepts the heated water produced from the solar resource, using a photoelectrochemicalcell. In this case the heat produced is either condensed as water or can be energized to provide power. Eventually the water , being converted to steam, cools and can be used as pure water. However, not all the heat required to make electrical energy is expended and the water used can be further useful before storage for consumption to separare hydrogen and then either recycled or stored for consumption. To do this a photoelectrical cell is required for separation of the hydrogen from the water and return the oxygen ions produced back as water.
However, there are still problems in balancing the hydrogten produced and restoration of the oxygen ions from the cell.
 In this case a catylist is required . The trick is to develop the catalyst to permit hydrogen to pass through while restraining the oxygen ions produced from the separation to be restored to the water or exhausted to the atmosphere.
Currently there is research on a membrane attached to the anode of the fuel cell to return the oxygen ions back to the water.Current interest is in a series of alloys known as perovskyte to accomplish this task. The alloys are produced from fine metal oxide powders to produce the membrane. They work but the reasons are not completely understood because they are based on atomic arrangement of the atoms. Current membranes work, but the efficiencies are not sufficient for economic production. New instruments are currently being developed to permit understanding of  atomic arrangment of atoms and the position of the elements contained within the atomic cell, Currently the size and position of the anions are being explored. One therory is that if the anions were smaller they could improve the energy potential. There are two thoughts under consideration. One that we favor is to use either a fine alloy or oxide powder and use a redox balance to create a liquid. The liquid is then converted as the membrane  on the anode, providing either a fine or an amrpous atomic structure, thereby improving the energy efficiency. MagnaTech believes that a modificatiion of a process that we have promoted to make magnetic ink will provide the proper microstructure and atomic spacing.
Currently developments in cryogenics can make storage and transport possible. If the hydrogen produced can be stored and transported as a solid to a refinery or to gas stations,  this problem is solved and there will be no problem transporting hydrogen through urban areas for delivery to gas, oops, hydrogen stations.If so we would have clean competitive energy to serve as fuel for our transportation. MagnaTech is investigating  ways to provide the membrane to make conversion of solar energy possible. However, it is in the infant stage of development and in need of financing.