Sunday, December 9, 2018

Fusion Nuclear Reactors

Many designs for clean nuclear energy are being considered for commercial application One such system is classified as a fusion reactor.Unfortunately, like all proposed new reactor designs, this reactor will operate in a hostile envirenment, which includes stress at high temperatures, corrosive salt bathsand neutron irradiation.In addition, the life of a nuclear reactor should exceed 50 years with scheduled maintenance and replacement of materials
Under these harsh conditions materials  to resist structural damage under conditions never experienced before require development . Yes, materials are available for high temperature applications, such as jet engines and these materials opperate in a hostile corrosive atmosphere as well. They are available and do the job well.
How about these reactors then. What makes material selection so much more critical for their design and function? Well, first they will opperate at temeratures ranging from 500 C to 1000 C. No problem. Now throw in the condition that the structural component require function in some kind of a salt envirenment. Now we are approaching some difficult selections, however, still possible. Now add the fact that irradiation occurs and you really have a large problem to resolve. What is the material that can sustain all of these factors? Unfortunately, under current technology this selection is not trivial and requires more careful study.
Well, what happens if you change the surface of these materials by application of a coating of some sort that is more corrosive resistant. Posssible to resist corrosion in salt solutions.; but how about the factor of irradiation? Now we are into the nitty gritty of the problem. First, studies of resistance to radiation are difficult to come by. Secondly, not only can there be more extensive surface damage owing to corrosion and defects in the material structture, but also there may be deterioration of the structural properties, owing to the applied opperating conditions.
For these reasons, MagnaTech is interested in the development of surface coatings capable of sustaining these operating conditions. MagnaTech is working on surface modification that could possibly reduce the damaqge from salt and radiation causing degradation of the surface. Steels are being developed and these steels are becoming available.Whether these steels will be capable of resisting structural degradation is also unknown, althoug more clearly defined. MagnaTech would like to present our concepts to companies that are interested in commercialization of the concepts, should they present a solution to the problem. Please contact us, should you too have interest in this area of opportunity.